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SUMMARY

Two iterative subspace methods (Arnoldi and Jacobi–Davidson) are compared for solving typical quadratic
eigenvalue problems arising when studying combustion instabilities. An academic, representative test case
is presented with associated analytical solution. The efficiency of the iterative methods is studied in terms
of running time when 1–10 eigenpairs are sought for, the computational domain being discretized with
500–32 000-node finite element meshes. The sensitivity of the methods to the dimension of the search
subspace is also investigated. Copyright q 2007 John Wiley & Sons, Ltd.

Received 24 April 2007; Revised 19 October 2007; Accepted 22 October 2007

KEY WORDS: quadratic eigenvalue problems; subspace methods; combustion instabilities

1. INTRODUCTION

One of the difficulties in the development of low-emission aircraft engines is the occurrence of
thermo-acoustic instabilities that are caused by the coupling between the flame and the acoustic
wave [1]. The linear acoustic wave equation for the pressure fluctuations written for a non-
isothermal reacting flow is an appropriate framework to study this phenomenon [2]. Assuming
harmonic variations, it leads to a generalized Helmholtz equation with the unsteady heat release
�̂T as a source term. Under the assumption that �̂T is a linear function of the acoustic pressure,
the Helmholtz equation is nothing but a functional eigenvalue problem (EVP) whose spectral
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elements are the pulsation � and the pressure complex amplitude p̂. The frequency f is obtained
with the relation �=2� f . Using a finite element method to discretize the flow domain leads
to an algebraic EVP whose size is close to N , the number of nodes in the mesh [3]. Usually,
a time delay between the acoustic field and the unsteady heat release is introduced so that �̂T
depends exponentially on � and the EVP is non-linear in the eigenvalues. Even in the absence
of flame–acoustic coupling (�̂T =0), the EVP remains non-linear in the general case. Indeed, the
boundary conditions imposed for the pressure fluctuation p̂ are usually chosen in order to prescribe
an appropriate reduced boundary impedance Z . This means imposing a Robin condition to the
pressure fluctuations, viz c0Z∇ p̂ ·n− i� p̂=0, where n is the unit outward vector normal to the
boundary and c0 the speed of sound. In the case where the boundary condition is given by a
constant, complex-valued impedance (Z = Z0), the EVP is quadratic [3, 4] and can be expressed
as

AP+�BP+�2CP=0 (1)

where A,B and C are sparse, square matrices of size close to the mesh size N . A is also symmetric,
B and C are diagonal. P contains the nodal values of the complex pressure amplitude.

Since the extra non-linearity arising from the acoustic–flame coupling can be handled efficiently
by using an iterative algorithm [3] where a quadratic EVP must be solved at each sub-iteration,
seeking the most efficient method for solving quadratic EVPs is relevant to the non-linear thermo-
acoustic problem.

2. NUMERICAL METHODS

2.1. Framework

The finite element method is used as a discretization technique to derive the quadratic EVP. In
the discretization, two important choices have been made that are of direct consequence for the
solution methods:

• The matrix C corresponds to a lumped mass matrix, and hence is diagonal. This implies
that operations both with C and its inverse C−1 are trivial to perform, and already in the
discretization phase the general quadratic eigenvalue is reduced to the more simple problem

C−1AP+�C−1BP+�2P=0

• The target problems are extremely large, and hence explicit computation and storage of
the global matrices is avoided. Instead, the implementation of the problem is matrix free,
which means that only routines are supplied for performing the matrix–vector multiplications
y=C−1Ax, and y=C−1Bx, and the matrices A, B and C are not explicitly available.

Clearly, the solution methods should satisfy the restrictions imposed by the above choices, which
implies that the solution methods should only address the matrices for performing matrix–vector
multiplications. This means, for example, that methods based on the QR decomposition are not
appropriate for solving these large-scale problems. Moreover, only the first modes with the smallest
frequencies are of interest in the context of thermo-acoustic instabilities. The objective of this paper
is thus to assess the efficiency of matrix-free methods to compute a few frequencies and associated
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modes of quadratic EVPs. In this context, iterative subspace methods are the appropriate methods
to consider. We will consider two of these methods.

2.2. The Arnoldi method—AR

The first method that we consider is the AR [5]. AR constructs eigenvalue approximation for the
standard EVP:

Ax=�x

by computing an orthonormal set of basis vectors q1 q2 · · ·qk for the Krylov subspace

Kk(A;q1)=span{q1,Aq1,A2q1, . . . ,Ak−1q1}
using the recurrence relation

AQk =QkHk+hk+1,kqk+1eTk (2)

Here, Qk =[q1 q2 · · · qk] and ek are the kth canonical basis vectors in Rk . Approximate eigen-
vectors u are constructed as linear combinations of the vectors q j

u=Qky

and the weights y in this linear combination are computed by imposing the Galerkin condition

Q∗
kAQk y=�y⇔Hky=�y

Note that the matrix Hk is computed as a side result of the Arnoldi relation. The Ritz value � is
an approximation for the eigenvalue �.

Unfortunately, quadratic EVPs cannot be handled directly by AR. We therefore first rewrite the
quadratic problem into an equivalent standard EVP of size 2N [6], for example,[

0 −I

C−1A C−1B

][
P

P�

]
+�

⎡
⎣ I 0

0 I

⎤
⎦[

P

P�

]
=0 (3)

where I is the unit matrix of size N . Note that P� =�P. We can then solve this system with the
AR algorithm.

The exterior eigenvalues, which are the eigenvalues at the extremes of the spectrum, tend to
converge fastest and are generally speaking easiest to find with AR. Unfortunately, the eigenvalues
we are interested, the ones close to zero, are interior eigenvalues of (3). A standard technique to
find interior eigenvalues is to apply AR to the shifted and inverted problem

(M−�I)−1x=�x

where � is a shift near the eigenvalues of interest and M the block matrix in Equation (3). The
eigenvalues � of the original problem can then be computed by �=�+1/�. The � near the shift
are mapped to exterior eigenvalues � of the shifted and inverted problem and convergence to them
is often fast. Unfortunately, in a matrix-free context it is hard to apply this technique, since the
matrix A is not explicitly available. Solving the shift-and-invert systems can therefore only be
performed with an iterative technique such as GMRES. Unfortunately, these systems are very ill
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conditioned if the shift is close to an eigenvalue, which results in extremely slow convergence
of GMRES. Moreover, it is not clear how to construct a good preconditioner to speed up the
convergence of GMRES if A is not explicitly known. Finally, the shift-and-invert systems should
be solved to a high enough accuracy not to disturb the Arnoldi relation (2), which would result
in inaccurate eigenvalue approximations. In view of these drawbacks we have chosen to apply
the standard AR method, without shift-and-invert technique. We use the state-of-the-art ARPACK
code of Lehoucq et al. [7], which implements Arnoldi with implicit restarts to limit memory
requirements and to compress the information of the desired eigenvectors into a small subspace.

2.3. The Jacobi–Davidson method—JD

The JD [8] was originally proposed as a method for solving the standard EVP. It was quickly
realized that JD could easily be extended for solving polynomial EVP [9]. The potential of the
method for quadratic EVPs was shown in [10, 11].

The JD method is, similar to AR, a subspace method. Hence, the same two key ingredients can
be recognized: the construction of a suitable expansion vector for the basis of the subspace (or
search space) and the computation of eigenvalue approximations. JD computes basis vectors for
the subspace by solving the so-called correction equation, which is given by(

I−wu∗

u∗w

)
(A+�B+�2C)(I−uu∗) t=−r

In this equation u is the latest approximation to the desired eigenvector, � the corresponding
eigenvalue approximation and the vector w is given by

w=Bu+2�Cu

The residual r is given by

r=Au+�Bu+�2Cu (4)

The solution t of the correction equation is orthogonalized with respect to the basis vectors of
the search space, which gives a new basis vector qk , where k denotes the iteration number.
As in AR all basis vectors of the subspace are collected in a matrix Qk =[q1 q2 · · · qk], and
approximate eigenvectors are constructed as linear combinations of the basis vectors u=Qky.
The idea behind solving the correction equation in JD is analogous to the shift-and-invert idea
in AR: to find expansions to the subspace that contain a large component in the direction of
the wanted eigenvector. However, in JD solutions of the correction equation are sought in the
space orthogonal to the latest eigenvector approximation, which means that if the corresponding
eigenvalue approximation � is close to a real eigenvalue, the system is still well conditioned.

New eigenvalue approximations are computed by imposing the Galerkin condition that the
residual has to be orthogonal to the search space, which yields

�2Q∗CQy+�Q∗BQy+Q∗AQy=0 (5)

This projected system is computed explicitly in JD; this is in contrast to AR where the projected
matrix H is a by-product of the Arnoldi relation (2). The disadvantage of the JD approach is that
the computation of the projected system is more costly. The advantage, on the other hand is that
no matter what Q is, the above relation is always consistent with (4), and hence only low-accurate

Copyright q 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2008; 56:1481–1487
DOI: 10.1002/fld



EIGENVALUE PROBLEMS FROM COMBUSTION 1485

solutions to the correction equations can be used as basis vectors for the search space. In practice,
approximate solutions of the correction equation are computed by performing a few GMRES
iterations.

It can be shown that JD is closely related to Newton’s method, and if the correction equation
is solved sufficiently accurately, convergence to the eigenpairs is quadratic.

3. NUMERICAL EXPERIMENTS

3.1. Test cases

The 2D and 3D model problems of increasing size are considered to compare the efficiency of
the different methods. Both 2D and 3D cavities (corresponding to the domain 0<x<Lx , 0<y<Ly
and 0<z<Lz for the 3D case, with Lz −→∞ in 2D) acoustically open at the boundary x= Lx are
considered in this section. For numerical applications, Lx =1, Ly =0.2, Lz =0.1 and the impedance
is set to Z0=−1.6−1.2 j .

Using a method of separation of variables, the analytical solution can be obtained and the
corresponding dispersion relation in k=�/c0 is

e2 jkx Lx

(
kx − k

Z0

)
−

(
kx + k

Z0

)
=0, kx =

√
k2−

(
ny�

Ly

)2

−
(
nz�

Lz

)2

, (ny,nz)∈N2

for the 3D case (nz =0 in 2D). All the computations discussed in this paper have been validated by
comparing the computed eigenvalues with the theoretical values from these (implicit) dispersion
relations. Note that the eigenvalues are complex valued. Uniform, finite element meshes with linear
elements (triangles in 2D, tetrahedras in 3D) have been used to generate quadratic EVPs with
500,2000,8000 and 32000 degrees of freedom. In the following we will refer to these EVPs as
2D-500, 2D-2000, . . . ,3D-8000, 3D-32 000.

3.2. Results

The stopping criterion is imposed to make a fair comparison. For AR an eigenvalue is considered
converged if ‖rAR‖<tol‖�‖ and if ‖rJD‖<tol‖�‖√1+‖�‖2 for JD. The running times required by
the AR and JD methods to obtain the 10 smallest eigenvalues are plotted in Figure 1 as a function
of N , the number of nodes of the finite element mesh used to discretize the EVP. The running time
is scaled by the amount of time required by the JD algorithm for the case 2D-500, viz 1.3s. The JD
method is more efficient than AR, certainly because it solves the quadratic problem directly while
the linearized problem, Equation (3), is solved by AR. Note also that the running time increases
faster for AR than for JD; for the 3D case, the central processing unit time increasing roughly as
N 1.52 for AR and only N 1.17 for JD. Figure 2 displays the scaled running times as a function of
the number of eigenpairs required for the 8000-node cases. The scaling factor is the computing
time required by the JD method to compute 1 eigenpair of the 2D-8000 case, viz 6.41s with the
processor used. As for Figure 1, JD is globally more efficient than AR, especially when a small
number of eigenpairs are sought for. Eventually, Figure 3 displays the scaled running times as a
function of the subspace dimension for the 8000-node meshes. The scaling factor corresponds to
JD applied to the 2D case with a subspace dimension equal to 90 and for computing 10 eigenpairs,
viz 27.78s. A nice result is that both methods are insensitive to this parameter.
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Figure 1. Scaled running times required by the AR (——) and JD (- - - -) methods as a function of the
size of the EVP. Left: 2D case, Right: 3D case.

Figure 2. Scaled running times required by the AR (——) and JD (- - - -) methods as a function of the
number of eigenpairs required. Left: 2D-8000 case, Right: 3D-8000 case.

Figure 3. Scaled running times required by the AR (——) and JD (- - - -) methods as a function of the
dimension of the search subspace. Left: 2D-8000 case, Right: 3D-8000 case.
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